# SURDS

Surds

A surd is a square root which cannot be reduced to a rational number.

For example,  is not a surd.

However  is a surd.

If you use a calculator, you will see that  and we will need to round the answer correct to a few decimal places. This makes it less accurate.

If it is left as , then the answer has not been rounded, which keeps it exact.

Here are some general rules when simplifying expressions involving surds.

1. aman = am + n
 am = am – n an
• (am)namn

1. (ab)nanbn

 a n = an b bn
1. a0= 1

Questions

Level-I

1.(17)3.5 x (17)? = 178
 A. 2.29 B. 2.75 C. 4.25 D. 4.5

2.
 If a x – 1 = b x – 3 , then the value of x is: b a
A.
 1 2
B.1
C.2
D.
 7 2

3.Given that 100.48 = x, 100.70 = y and xz = y2, then the value of z is close to:
 A. 1.45 B. 1.88 C. 2.9 D. 3.7

4.If 5a = 3125, then the value of 5(a – 3) is:
 A. 25 B. 125 C. 625 D. 1625

5.If 3(x – y) = 27 and 3(x + y) = 243, then x is equal to:
 A. 0 B. 2 C. 4 D. 6

.6.(256)0.16 x (256)0.09 = ?
 A. 4 B. 16 C. 64 D. 256.25

7.The value of [(10)150 ÷ (10)146]
 A. 1000 B. 10000 C. 100000 D. 106

8.
 1 + 1 + 1 = ? 1 + x(b – a) + x(c – a) 1 + x(a – b) + x(c – b) 1 + x(b – c) + x(a – c)
 A. 0 B. 1 C. xa – b – c D. None of these

9.(25)7.5 x (5)2.5 ÷ (125)1.5 = 5?
 A. 8.5 B. 13 C. 16 D. 17.5 E. None of these

10.(0.04)-1.5 = ?
 A. 25 B. 125 C. 250 D. 625

Level-II

11.
 (243)n/5 x 32n + 1 = ? 9n x 3n – 1
 A. 1 B. 2 C. 9 D. 3n

12.
 1 + 1 = ? 1 + a(n – m) 1 + a(m – n)
A.0
B.
 1 2
C.1
D.am + n

13.If m and n are whole numbers such that mn = 121, the value of (m – 1)n + 1 is:
 A. 1 B. 10 C. 121 D. 1000

14.
 xb (b + c – a) . xc (c + a – b) . xa (a + b – c) = ? xc xa xb
 A. xabc B. 1 C. xab + bc + ca D. xa + b + c

1. If 5√5 * 53÷ 5-3/2= 5a+2 , the value of a is:
A. 4
B. 5
C. 6
D. 8

 16.(132)7 ×(132)? =(132)11.5.

A. 3
B. 3.5
C. 4
D. 4.5

17. (ab)x−2=(ba)x−7. What is the value   of x ?

A. 3
B. 4
C. 3.5
D. 4.5

18. (0.04)-2.5 = ?

A. 125
B. 25
C. 3125
D. 625

Level-I

Explanation:

Let (17)3.5 x (17)x = 178.

Then, (17)3.5 + x = 178.

3.5 + x = 8

x = (8 – 3.5)

x = 4.5

Explanation:

 Given a x – 1 = b x – 3 b a

 a x – 1 = a -(x – 3) = a (3 – x) b b b

x – 1 = 3 – x

2x = 4

x = 2.

Explanation:

xz = y2        10(0.48z) = 10(2 x 0.70) = 101.40

0.48z = 1.40

 z = 140 = 35 = 2.9 (approx.) 48 12

Explanation:

5a = 3125        5a = 55

a = 5.

5(a – 3) = 5(5 – 3) = 52 = 25.

Explanation:

3x – y = 27 = 33        x – y = 3 ….(i)

3x y = 243 = 35        x + y = 5 ….(ii)

On solving (i) and (ii), we get x = 4

Explanation:

(256)0.16 x (256)0.09 = (256)(0.16 + 0.09)

= (256)0.25

= (256)(25/100)

= (256)(1/4)

= (44)(1/4)

= 44(1/4)

= 41

= 4

Explanation:

 (10)150 ÷ (10)146 = 10150 10146

= 10150 – 146

= 104

= 10000.

Explanation:

Given Exp. =
1 +1 +1
 1 + xb + xc xa xa
 1 + xa + xc xb xb
 1 + xb + xa xc xc

 = xa + xb + xc (xa + xb + xc) (xa + xb + xc) (xa + xb + xc)

 = (xa + xb + xc) (xa + xb + xc)

= 1.

Explanation:

Let (25)7.5 x (5)2.5 ÷ (125)1.5 = 5x.

 Then, (52)7.5 x (5)2.5 = 5x (53)1.5

 5(2 x 7.5) x 52.5 = 5x 5(3 x 1.5)

 515 x 52.5 = 5x 54.5

5x = 5(15 + 2.5 – 4.5)

5x = 513

x = 13.

Explanation:

 (0.04)-1.5 = 4 -1.5 100

 = 1 -(3/2) 25

= (25)(3/2)

= (52)(3/2)

= (5)2 x (3/2)

= 53

= 125.

Level-II

Explanation:

Given Expression
 = (243)(n/5) x 32n + 1 9n x 3n – 1
 = (35)(n/5) x 32n + 1 (32)n x 3n – 1
 = (35 x (n/5) x 32n + 1) (32n x 3n – 1)
 = 3n x 32n + 1 32n x 3n – 1
 = 3(n + 2n + 1) 3(2n + n – 1)
 = 33n + 1 33n – 1
 = 3(3n + 1 – 3n + 1)   = 32   = 9.

Explanation:

1+1=
1 +1
 1 + an am
 1 + am an
1 + a(n – m)1 + a(m – n)

 = am + an (am + an) (am + an)

 = (am + an) (am + an)

= 1.

Explanation:

We know that 112 = 121.

Putting m = 11 and n = 2, we get:

(m – 1)n + 1 = (11 – 1)(2 + 1) = 103 = 1000.

Explanation:

Given Exp.

 = x(b – c)(b + c – a) . x(c – a)(c +a – b) . x(a – b)(a + b – c)
 = x(b – c)(b + c) – a(b – c)  .  x(c – a)(c + a) – b(c – a) .  x(a – b)(a + b) – c(a – b)
 = x(b2 – c2 + c2 – a2 + a2 – b2)  .   x–a(b – c) – b(c – a) – c(a – b)
 = (x0 x x0)
 = (1 x 1) = 1.

Explanation

am.an=am+n

(132)7 × (132)x = (132)11.5

=> 7 + x = 11.5

=> x = 11.5 – 7 = 4.5

Explanation:

an=1a−n

(ab)x−2=(ba)x−7⇒(ab)x−2=(ab)−(x−7)⇒x−2=−(x−7)⇒x−2=−x+7⇒x−2=−x+7⇒2x=9⇒x=92=4.5

Explanation:

a−n=1/an

(0.04)−2.5=(1/.04)2.5=(100/4)2.5=(25)2.5=(52)2.5=(52)(5/2)=55=3125

KPSC Notes brings Prelims and Mains programs for KPSC Prelims and KPSC Mains Exam preparation. Various Programs initiated by KPSC Notes are as follows:- For any doubt, Just leave us a Chat or Fill us a querry––

Hope we have satisfied your need for KPSC Prelims and Mains Preparation

#### Kindly review us to serve even better

KPSC Mains Test Series 2022

20 Quality mock tests and GS Mains Notes

Mains Test Series and Notes

Mains Printed Notes (With COD)

KPSC Prelims Test Series 2022

24 Quality mock tests and GS Prelims Notes

Prelims Test Series and Notes

Prelims Printed Notes (With COD)

[jetpack_subscription_form title=”Subscribe to KPSC Notes” subscribe_text=”Never Miss any KPSC important update!” subscribe_button=”Sign Me Up” show_subscribers_total=”1″]

error: Content is protected !!