Photosynthesis, the process by which green plants and certain other organisms transform light energy into chemical energy. During photosynthesis in green plants, light energy is captured and used to convert water, carbon dioxide, and minerals into oxygen and energy-rich organic compounds.

It would be impossible to overestimate the importance of photosynthesis in the maintenance of life on Earth. If photosynthesis ceased, there would soon be little food or other organic matter on Earth. Most organisms would disappear, and in time Earth’s atmosphere would become nearly devoid of gaseous oxygen. The only organisms able to exist under such conditions would be the chemosynthetic bacteria, which can utilize the chemical energy of certain inorganic compounds and thus are not dependent on the conversion of light energy.

In plants, algae and cyanobacteria, long-term energy storage in the form of sugars is produced by a subsequent sequence of light-independent reactions called the Calvin cycle; some bacteria use different mechanisms, such as the reverse Krebs cycle, to achieve the same end. In the Calvin cycle, atmospheric carbon dioxide is incorporated into already existing organic carbon compounds, such as ribulose bisphosphate (RuBP). Using the ATP and NADPH produced by the light-dependent reactions, the resulting compounds are then reduced and removed to form further carbohydrates, such as glucose.

The first photosynthetic organisms probably evolved early in the evolutionary history of life and most likely used reducing agents such as hydrogen or hydrogen sulfide, rather than water, as sources of electrons. Cyanobacteria appeared later; the excess oxygen they produced contributed directly to the oxygenation of the Earth, which rendered the evolution of complex life possible. Today, the average rate of energy capture by photosynthesis globally is approximately 130 terawatts, which is about three times the current power consumption of human civilization. Photosynthetic organisms also convert around 100–115 thousand million tonnes of carbon into biomass per year.


Steps of photosynthesis

  • Carbon dioxide in the atmosphere enters the plant leaf through stomata, i.e., minute epidermal pores in the leaves and stem of plants which facilitate the transfer of various gases and water vapor.


  • Water enters the leaves, primarily through the roots. These roots are especially designed to draw the ground water and transport it to the leaves through the stem.
  • As sunlight falls on the leaf surface, the chlorophyll, i.e., the green pigment present in the plant leaf, traps the energy in it. Interestingly, the green color of the leaf is also attributed to presence of chlorophyll.
  • Then hydrogen and oxygen are produced by converting water using the energy derived from the Sun. Hydrogen is combined with carbon dioxide in order to make food for the plant, while oxygen is released through the stomata. Similarly, even algae and bacteria use carbon dioxide and hydrogen to prepare food, while oxygen is let out as a waste product.
  • The electrons from the chlorophyll molecules and protons from the water molecules facilitate chemical reactions in the cell. These reactions produce ATP (adenosine triphosphate), which provides energy for cellular reactions, and NADP (nicotinamide adenine dinucleotide diphosphate), essential in plant metabolism.

The entire process can be explained by a single chemical formula.

6CO2 +12H2O + Light → C6H12O6 + 6O2+ 6H2O

While we take in oxygen and give out carbon dioxide to produce energy, plants take in carbon dioxide and give out oxygen to produce energy.

Light-dependent reactions

In the light-dependent reactions, one molecule of the pigment chlorophyll absorbs one photon and loses one electron. This electron is passed to a modified form of chlorophyll called pheophytin, which passes the electron to a quinone molecule, starting the flow of electrons down an electron transport chain that leads to the ultimate reduction of NADP to NADPH. In addition, this creates a proton gradient (energy gradient) across the chloroplast membrane, which is used by ATP synthase in the synthesis of ATP. The chlorophyll molecule ultimately regains the electron it lost when a water molecule is split in a process called photolysis, which releases a dioxygen (O2) molecule as a waste product.

The overall equation for the light-dependent reactions under the conditions of non-cyclic electron flow in green plants is:

2 H2O + 2 NADP+ + 3 ADP + 3 Pi + light → 2 NADPH + 2 H+ + 3 ATP + O2

Not all wavelengths of light can support photosynthesis. The photosynthetic action spectrum depends on the type of accessory pigments present. For example, in green plants, the action spectrum resembles the absorption spectrum for chlorophylls and carotenoids with absorption peaks in violet-blue and red light. In red algae, the action spectrum is blue-green light, which allows these algae to use the blue end of the spectrum to grow in the deeper waters that filter out the longer wavelengths (red light) used by above ground green plants. The non-absorbed part of the light spectrum is what gives photosynthetic organisms their color (e.g., green plants, red algae, purple bacteria) and is the least effective for photosynthesis in the respective organisms.

Z scheme

In plants, light-dependent reactions occur in the thylakoid membranes of the chloroplasts where they drive the synthesis of ATP and NADPH. The light-dependent reactions are of two forms: cyclic and non-cyclic.

In the non-cyclic reaction, the photons are captured in the light-harvesting antenna complexes of photosystem II by chlorophyll and other accessory pigments (see diagram at right). The absorption of a photon by the antenna complex frees an electron by a process called photoinduced charge separation. The antenna system is at the core of the chlorophyll molecule of the photosystem II reaction center. That freed electron is transferred to the primary electron-acceptor molecule, pheophytin. As the electrons are shuttled through an electron transport chain (the so-called Z-scheme shown in the diagram), it initially functions to generate a chemiosmotic potential by pumping proton cations (H+) across the membrane and into the thylakoid space. An ATP synthase enzyme uses that chemiosmotic potential to make ATP during photophosphorylation, whereas NADPH is a product of the terminal redox reaction in the Z-scheme. The electron enters a chlorophyll molecule in Photosystem I. There it is further excited by the light absorbed by that photosystem. The electron is then passed along a chain of electron acceptors to which it transfers some of its energy. The energy delivered to the electron acceptors is used to move hydrogen ions across the thylakoid membrane into the lumen. The electron is eventually used to reduce the co-enzyme NADP with a H+ to NADPH (which has functions in the light-independent reaction); at that point, the path of that electron ends.

The cyclic reaction is similar to that of the non-cyclic, but differs in that it generates only ATP, and no reduced NADP (NADPH) is created. The cyclic reaction takes place only at photosystem I. Once the electron is displaced from the photosystem, the electron is passed down the electron acceptor molecules and returns to photosystem I, from where it was emitted, hence the name cyclic reaction.

Light-independent reactions (dark reactions)

Calvin cycle

In the light-independent (or “dark”) reactions, the enzyme RuBisCO captures CO2 from the atmosphere and, in a process called the Calvin-Benson cycle, it uses the newly formed NADPH and releases three-carbon sugars, which are later combined to form sucrose and starch. The overall equation for the light-independent reactions in green plants is:

3 CO2 + 9 ATP + 6 NADPH + 6 H+ → C3H6O3-phosphate + 9 ADP + 8 Pi + 6 NADP+ + 3 H2O

Carbon fixation produces the intermediate three-carbon sugar product, which is then converted to the final carbohydrate products. The simple carbon sugars produced by photosynthesis are then used in the forming of other organic compounds, such as the building material cellulose, the precursors for lipid and amino acid biosynthesis, or as a fuel in cellular respiration. The latter occurs not only in plants but also in animals when the energy from plants is passed through a food chain.

The fixation or reduction of carbon dioxide is a process in which carbon dioxide combines with a five-carbon sugar, ribulose 1,5-bisphosphate, to yield two molecules of a three-carbon compound, glycerate 3-phosphate, also known as 3-phosphoglycerate. Glycerate 3-phosphate, in the presence of ATP and NADPH produced during the light-dependent stages, is reduced to glyceraldehyde 3-phosphate. This product is also referred to as 3-phosphoglyceraldehyde (PGAL) or, more generically, as triose phosphate. Most (5 out of 6 molecules) of the glyceraldehyde 3-phosphate produced is used to regenerate ribulose 1,5-bisphosphate so the process can continue. The triose phosphates not thus “recycled” often condense to form hexose phosphates, which ultimately yield sucrose, starch and cellulose. The sugars produced during carbon metabolism yield carbon skeletons that can be used for other metabolic reactions like the production of amino acids and lipids.

Factors affecting photosynthesis

There are three main factors affecting photosynthesis and several corollary factors. The three main are:

Light irradiance and wavelength

Carbon dioxide concentration


Total photosynthesis is limited by a range of environmental factors. These include the amount of light available, the amount of leaf area a plant has to capture light (shading by other plants is a major limitation of photosynthesis), rate at which carbon dioxide can be supplied to the chloroplasts to support photosynthesis, the availability of water, and the availability of suitable temperatures for carrying out photosynthesis.

Light intensity (irradiance), wavelength and temperature

The process of photosynthesis provides the main input of free energy into the biosphere, and is one of four main ways in which radiation is important for plant life.

The radiation climate within plant communities is extremely variable, with both time and space.

In the early 20th century, Frederick Blackman and Gabrielle Matthaei investigated the effects of light intensity (irradiance) and temperature on the rate of carbon assimilation.

  • At constant temperature, the rate of carbon assimilation varies with irradiance, increasing as the irradiance increases, but reaching a plateau at higher irradiance.
  • At low irradiance, increasing the temperature has little influence on the rate of carbon assimilation. At constant high irradiance, the rate of carbon assimilation increases as the temperature is increased.

These two experiments illustrate several important points: First, it is known that, in general, photochemical reactions are not affected by temperature. However, these experiments clearly show that temperature affects the rate of carbon assimilation, so there must be two sets of reactions in the full process of carbon assimilation. These are the light-dependent ‘photochemical’ temperature-independent stage, and the light-independent, temperature-dependent stage. Second, Blackman’s experiments illustrate the concept of limiting factors. Another limiting factor is the wavelength of light. Cyanobacteria, which reside several meters underwater, cannot receive the correct wavelengths required to cause photoinduced charge separation in conventional photosynthetic pigments. To combat this problem, a series of proteins with different pigments surround the reaction center. This unit is called a phycobilisome.

Carbon dioxide levels and photorespiration

As carbon dioxide concentrations rise, the rate at which sugars are made by the light-independent reactions increases until limited by other factors. RuBisCO, the enzyme that captures carbon dioxide in the light-independent reactions, has a binding affinity for both carbon dioxide and oxygen. When the concentration of carbon dioxide is high, RuBisCO will fix carbon dioxide. However, if the carbon dioxide concentration is low, RuBisCO will bind oxygen instead of carbon dioxide. This process, called photorespiration, uses energy, but does not produce sugars.

RuBisCO oxygenase activity is disadvantageous to plants for several reasons:

  • One product of oxygenase activity is phosphoglycolate (2 carbon) instead of 3-phosphoglycerate (3 carbon). Phosphoglycolate cannot be metabolized by the Calvin-Benson cycle and represents carbon lost from the cycle. A high oxygenase activity, therefore, drains the sugars that are required to recycle ribulose 5-bisphosphate and for the continuation of the Calvin-Benson cycle.
  • Phosphoglycolate is quickly metabolized to glycolate that is toxic to a plant at a high concentration; it inhibits photosynthesis.
  • Salvaging glycolate is an energetically expensive process that uses the glycolate pathway, and only 75% of the carbon is returned to the Calvin-Benson cycle as 3-phosphoglycerate. The reactions also produce ammonia (NH3), which is able to diffuse out of the plant, leading to a loss of nitrogen. A highly simplified summary is:

2 glycolate + ATP → 3-phosphoglycerate + carbon dioxide + ADP + NH3

The salvaging pathway for the products of RuBisCO oxygenase activity is more commonly known as photorespiration, since it is characterized by light-dependent oxygen consumption and the release of carbon dioxide.

Experiments related to photosynthesis

Experiment to demonstrate Moll’s half-leaf experiment for showing that CO2, light, chlorophyll and water are necessary requirements for photosynthesis:

  • De-starch a potted plant by putting it in complete darkness for two days.
  • Fill partly a wide-mouthed bottle with strong solution of caustic potash and fit a split cork on its mouth.
  • Insert about half of the portion of a leaf of the de-starched plant into the bottle through the split cork.
  • Place the whole apparatus in light after applying grease on the upper portion of split cork, and test the leaf for stach after about 10 hours.

Portions of the leaf inside the bottle as well as in between the split cork show negative test for starch indicating the absence of photosynthesis while the portions outside the split cork show positive test for starch indicating the presence of process of photosynthesis in this region.

Negative starch test by the leaf portion present inside the bottle indicates that process of photosynthesis is absent in this region. This portion of leaf is getting all the essential requirements, i.e., light, chlorophyll and water except the CO2 because the latter is absorbed by the caustic potash. Thus, it can be concluded that CO2 is necessary for this process.

Negative test of starch, which is also shown by the portion of the leaf present in between the split of the split cork, can be explained that it is due to the lack of CO2 and light, thus indicating that both of them are essential requirements.

Positive test of starch shown by the portions of the leaf present outside the bottle indicates that photosynthesis process is continuously going on there because all the essential requirements, i.e., light, chlorophyll, water and CO2 are readily available to this portion.

That the chlorophyll is also an essential requirement for photosynthesis can be shown by testing starch in a variegated leaf. Only green portions of the leaf show positive starch test.

Experiment to demonstrate that oxygen is evolved during the process of photosynthesis:

  • Fill the beaker with the water and take an aquatic plant, such as Hydrilla, in the beaker.
  • Cut the bases of the plants, tie them with a thread and cover them with an inverted funnel in such a fashion that the cut ends of plants are towards the neck of the funnel.
  • Fill a test tube with the water and invert it on the upper end of the funnel.
  • Keep the whole apparatus in sunlight and observe for some time.

From the cut ends of the plant some bubbles are coming out continuously and they are collected at the top of the test tube by displacing the water. On testing this gas it is found that it is oxygen.

The liberated gas is oxygen and it is evolved due to the photolysis of water under the process of photosynthesis. The liberated gas comes in the intercellular spaces and ultimately evolves out through the stomata.






Factors affecting photosynthesis


Without light, a plant cannot photosynthesize very quickly, regardless of whether there are water and CO2 or not. But overdoing light is also not a good idea. In nature, balance is crucial. But increasing the intensity of light to a prudent limit will speed up the process.

Carbon Dioxide

It happens to be the major limiting factor. The problem arises because the concentration of carbon dioxide in the air is less. Even if there is plenty of light, the plant cannot photosynthesize in the absence of sufficient amount of carbon dioxide.


The plants are affected lesser by temperature in comparison to light and CO2. Nevertheless, if the temperature is too hot or too cold, the rate of photosynthesis is adversely affected. C4 plants have an affinity towards higher temperatures while C3 have a much lower optimum temperature.


It makes its presence felt more through its effect on the plant rather than directly on photosynthesis. It is found that slight deficiency of water shows a considerable reduction in plant yield.

KPSC Notes brings Prelims and Mains programs for KPSC Prelims and KPSC Mains Exam preparation. Various Programs initiated by KPSC Notes are as follows:- For any doubt, Just leave us a Chat or Fill us a querry––

Hope we have satisfied your need for KPSC Prelims and Mains Preparation

Kindly review us to serve even better

KPSC Mains Test Series 2020

20 Quality mock tests and GS Mains Notes

Mains Test Series and Notes

Mains Printed Notes (With COD)

KPSC Prelims Test Series 2020

24 Quality mock tests and GS Prelims Notes

Prelims Test Series and Notes

Prelims Printed Notes (With COD)

Subscribe to KPSC Notes

Never Miss any KPSC important update!

Join 2,007 other subscribers

error: Content is protected !!